C.U.SHAH UNIVERSITY Summer Examination-2016

Subject Name: Differential Geometry

Subject Code : 5SC02MTC1		Branch: M.Sc.(Mathematics)	
Semester : 2	Date : 04/05/2016	Time : 10:30 To 01:30	Marks : 70

Instructions:

Q-1

Q-2

- (1) Use of Programmable calculator and any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

SECTION – I

Attempt the Following questions. (07)**a.** State four Vertex theorems. (01)**b.** Define: unit normal of $\bar{\gamma}$. (01)c. Write the definition of curvature of K(t) for unit speed curve. (01)**d.** Give formula of arc length. (01)e. The following statement is true or false? The surface $S = \{(x, y, z) \in \mathbb{R}^3 : x^2 + z^2 \}$ (01) $y^2 + z^2 = 1$ can be covered by single patch. **f.** Define $f^*: T_n S_1 \times T_n S_1 \to R$ by $f^* < v, w >_p = _$ ______. (01) **g.** Let $T: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ be a symmetric bilinear map. If T < x, x > = 0 for all (01) $x \in \mathbb{R}^n$, then show that T = 0. Attempt all questions (14)a) If $\bar{\gamma}$ is a regular curve in \mathbb{R}^3 , then show that its curvature K is given by the (07) formula $K = \frac{\|\ddot{\gamma} \times \dot{\gamma}\|}{\|\dot{\gamma}\|^3}.$

b) Let $\bar{\gamma}$ be a regular curve in R^3 with nowhere vanishing curvature. Show that γ is (07) spherical if and only if $\frac{\tau}{K} = \frac{d}{dt} \left(\frac{\dot{K}}{K^2 \tau} \right)$

OR

Attempt all questions Q-2

State and prove Wirtinger's inequality. a)

Page 1 || 3

(14)

(07)

	b)	Let $\overline{\gamma}$: $(a, b) \to \mathbb{R}^n$ be a parametrized curve. Show that $\overline{\gamma}$ is regular if and only if it has unit speed reparametrization	(07)
0-3		Attempt all questions	(14)
×υ	a)	Let $\sigma: U \to R^3$ be a patch of a surface S containing a point p of S, i.e.	(07)
	/	$p = \sigma(u_0, v_0)$ for some $(u_0, v_0) \in U$. Then show that the tangent space to S at p	
		is a vector subspace of R^3 spanned by the vectors $\sigma_u(u_0, v_0)$ and $\sigma_v(u_0, v_0)$.	
	b)	Find the first fundamental form of the	(07)
	,	surface $\sigma(u, v) = (\cos u \cos v, \sin v \cos u, \sin u)$.	
		OR	
Q-3		Attempt all Questions	(14)
	a)	Let S_1 and S_2 be smooth surface, and $f: S_1 \to S_2$ be a local diffeomorphism.	(07)
		Show that f is local isometry if and only if for any surface patch σ of S_1 , the	
		patches σ and $f \circ \sigma$ of S_1 and S_2 respectively have the same first fundamental	
		form.	
	b)	Compute the surface area of the sphere of radius R .	(07)
		SECTION – II	
Q-4		Attempt the Following questions.	(07)
	a.	Give an example of not oriented surface.	(01)
	b.	Define: Gauss Map.	(01)
	c.	Write Geodesic equation.	(01)
	d.	Define: mean curvature.	(01)
	e.	Derive $\sigma_{uu} \sigma_u = \frac{1}{2} E_u$	(01)
	f.	State Gauss Bonnet Theorem.	(01)
	g.	$\Gamma_{11}^1 =$	(01)
	U		
Q-5		Attempt all questions	(14)
	a)	Compute Gaussian curvature and mean curvature of the surface $z = f(x, y)$	(07)
		where f is a smooth map.	
	b)	Let σ be a surface patch of an oriented surface S containing a point p of S,	(07)
		say, $p = \sigma(u, v)$. Then show that	
		$II_p < w, x \ge L dU(w)dU(x) + M(dU(w)dV(x) + dU(x)dV(w)) +$	
		$NdV(w)dV(x)$ for all $w, x \in T_pS$, where $dU, dV: T_pS \to R$ are defined by	
		$dU(w) = \lambda$ and $dV(w) = \mu$ where $w = \lambda \sigma_u + \mu \sigma_v \in T_p S$.	
		OR	

Q-5

Attempt all Questions (14) a) Let $\sigma: U \to R^3$ be a regular surface patch and $(u_0, v_0) \in U$. For $\delta > 0$. Let (07) $B_{\delta} = \{(u, v): (u - u_0)^2 + (v - v_0)^2 < \delta^2\}$. Let *K* be Gaussian curvature of the surface at *p*. Then $\lim_{\delta \to 0} \frac{A_{\overline{N}}(B_{\delta})}{A_{\sigma}(B_{\delta})} = |K|$.

b) Let σ be a surface patch of an oriented surface S, and let p be in the image of σ ; (07) i.e. $p = \sigma(u, v)$, for some $(u, v) \in U$ then show that the matrix of W_p with

Page 2 || 3

respect to the basis
$$\{\sigma_u, \sigma_v\}$$
 of $T_p S$ is $\begin{pmatrix} E & F \\ F & G \end{pmatrix}^{-1} \begin{pmatrix} L & M \\ M & N \end{pmatrix}$.

Q-6

Q-6Attempt all questions(14)a) Compute the Christoffel's symbols of second kind for the circular cylinder(07) $\sigma(u, v) = (\cos u, \sin u, v).$ (07)b) Let $\bar{\gamma}(t) = \sigma(u(t), v(t))$ be a curve on a surface patch σ . Show that $\bar{\gamma}$ is(07)Geodesic if and only if $\ddot{u} + (\Gamma_{11}^1 \dot{u} + \Gamma_{12}^1 \dot{v}) \dot{u} + (\Gamma_{12}^1 \dot{u} + \Gamma_{22}^1 \dot{v}) \dot{v} = 0$ (07)and $\ddot{v} + (\Gamma_{11}^2 \dot{u} + \Gamma_{12}^2 \dot{v}) \dot{u} + (\Gamma_{12}^2 \dot{u} + \Gamma_{22}^2 \dot{v}) \dot{v} = 0$ OR

	Attempt all Questions	(14)
a)	a) Determine the Geodesics on a plane.	
b)	Show that a unit speed curve on a surface S is Geodesic if and only if its geodesic curvature is zero every where. Also prove that any (part of a) line on a surface is a geodesic.	(07)

Page 3 || 3

