\qquad

C.U.SHAH UNIVERSITY

Summer Examination-2016

Subject Name: Differential Geometry

Subject Code : 5SC02MTC1
Branch: M.Sc.(Mathematics)
Semester: 2
Date : 04/05/2016
Time : 10:30 To 01:30
Marks : 70

Instructions:
(1) Use of Programmable calculator and any other electronic instrument is prohibited.
(2) Instructions written on main answer book are strictly to be obeyed.
(3) Draw neat diagrams and figures (if necessary) at right places.
(4) Assume suitable data if needed.

SECTION - I

Q-2 Attempt all questions

a) If $\bar{\gamma}$ is a regular curve in R^{3}, then show that its curvature K is given by the formula

$$
\begin{equation*}
K=\frac{\|\ddot{\bar{\gamma}} \times \dot{\bar{\gamma}}\|}{\|\dot{\bar{\gamma}}\|^{3}} . \tag{07}
\end{equation*}
$$

b) Let $\bar{\gamma}$ be a regular curve in R^{3} with nowhere vanishing curvature. Show that γ is spherical if and only if $\frac{\tau}{K}=\frac{d}{d t}\left(\frac{\dot{K}}{K^{2} \tau}\right)$

OR

Q-2 Attempt all questions

a) State and prove Wirtinger's inequality.

b) Let $\bar{\gamma}:(a, b) \rightarrow R^{n}$ be a parametrized curve. Show that $\bar{\gamma}$ is regular if and only if it has unit speed reparamerization.

Q-5 Attempt all Questions
a) Let $\sigma: U \rightarrow R^{3}$ be a regular surface patch and $\left(u_{0}, v_{0}\right) \in U$. For $\delta>0$. Let $B_{\delta}=\left\{(u, v):\left(u-u_{0}\right)^{2}+\left(v-v_{0}\right)^{2}<\delta^{2}\right\}$. Let K be Gaussian curvature of the surface at p. Then $\lim _{\delta \rightarrow 0} \frac{A_{\bar{N}}\left(B_{\delta}\right)}{A_{\sigma}\left(B_{\delta}\right)}=|K|$.
b) Let σ be a surface patch of an oriented surface S , and let p be in the image of σ;
i.e. $p=\sigma(u, v)$, for some $(u, v) \in U$ then show that the matrix of W_{p} with

respect to the basis $\left\{\sigma_{u}, \sigma_{v}\right\}$ of $T_{p} S$ is $\left(\begin{array}{ll}E & F \\ F & G\end{array}\right)^{-1}\left(\begin{array}{cc}L & M \\ M & N\end{array}\right)$.

Q-6

Attempt all questions

a) Compute the Christoffel's symbols of second kind for the circular cylinder $\sigma(u, v)=(\cos u, \sin u, v)$.
b) Let $\bar{\gamma}(t)=\sigma(u(t), v(t))$ be a curve on a surface patch σ. Show that $\bar{\gamma}$ is Geodesic if and only if $\ddot{u}+\left(\Gamma_{11}^{1} \dot{u}+\Gamma_{12}^{1} \dot{v}\right) \dot{u}+\left(\Gamma_{12}^{1} \dot{u}+\Gamma_{22}^{1} \dot{v}\right) \dot{v}=0$

$$
\text { and } \ddot{v}+\left(\Gamma_{11}^{2} \dot{u}+\Gamma_{12}^{2} \dot{v}\right) \dot{u}+\left(\Gamma_{12}^{2} \dot{u}+\Gamma_{22}^{2} \dot{v}\right) \dot{v}=0
$$

OR

Q-6

Attempt all Questions

a) Determine the Geodesics on a plane.
b) Show that a unit speed curve on a surface S is Geodesic if and only if its geodesic curvature is zero every where. Also prove that any (part of a) line on a surface is a geodesic.

